Electric-Field-Induced Transitions of Amphiphilic Layers on Mercury Electrodes
نویسندگان
چکیده
There are numerous examples in the literature of amphiphilic molecules which, when adsorbed onto mercury electrodes, undergo electric-field-induced transitions between different molecular conformations. In general, very sharp and reversible voltammetric features associated with these transitions are observed when the electrode potential is scanned in the negative direction, typically over the range of -0.30 to 1.50 V vs SCE, although no redox center is active in these molecular assemblies within this potential range. Using simple electrostatic and thermodynamic arguments, an analytical expression is derived that allows the voltammetric response to be computed in terms of possible molecular conformational changes of the monolayer. The magnitude, shape, and potential of the voltammetric wave are dependent upon molecular parameters (e.g., charge distribution, dimensions, and dielectric properties of the amphiphile), surface coverage, and nonelectrostatic energy contributions. A peak-shaped voltammetric response is shown to be consistent with the redistribution of charged sites within the amphiphilic layer in response to the surface electric field. Numerical results are in qualitative agreement with voltammetric data for dioleoylphosphatidylcholine (DOPC) adsorbed onto mercury electrodes.
منابع مشابه
Numerical Study of Pure Electroconvection and Combined Electro-thermo-convection in Horizontal Channels
Electrohydrodynamic effect on natural convection in horizontal channels is investigated from a numerical point of view. The EHD effect is induced by narrow strip electrodes placed at the bottom wall of the channel. The channel is subjected in a first stage only to the electric forces, and in a second stage to the simultaneous action of a temperature gradient and an electric field. The interacti...
متن کاملEffect of Electric Potential Distribution on Electromechanical Behavior of a Piezoelectrically Sandwiched Micro-Beam
The paper deals with the mechanical behavior of a micro-beam bonded with two piezoelectric layers. The micro-beam is suspended over a fixed substrate and undergoes the both piezoelectric and electrostatic actuation. The piezoelectric layers are poled through the thickness and equipped with surface electrodes. The equation governing the micro-beam deflection under electrostatic pressure is deriv...
متن کاملDynamic templating of colloidal patterns in three dimensions with nonuniform electric fields.
Order-disorder transitions in colloidal systems are an attractive option for making switchable materials. Electric-field-driven order-disorder transitions are especially attractive for this purpose because the tuning parameter is easily and externally controllable. However, precise positional control of 3D structure is immensely challenging. Using patterned electrodes, we demonstrate that ac el...
متن کاملAC Electrophoresis; Deposition of Ceramic Nanaoparticles on In-plane Electrodes at Low Frequencies (RESEARCH NOTE)
Deposition of ceramic nanoparticles (dispersed in a non-aqueous suspension) on in-plane electrodes and under the influence of AC electric fields in the frequency range of 0.01 Hz - 10 kHz is investigated. Analysis of the particle response to the applied field is a difficult task due to the mutual effect of electric- and hydrodynamic force which are present in the system. In this work, however, ...
متن کاملDetermination of Electric Field at Inception Based upon Current-Voltage Characteristics of AC Corona in Rod-Plane Gaps
This paper deals with the measurement of AC corona inception voltage, Vincp, at the tip of a rod electrode using a hemispherically-capped rod-plane electrode configuration for various rod radii with a short air gap. Effects of atmospheric pressure and temperature variation on Vincp are investigated experimentally. An empirical equation for the field form factors of the hemispherically cappe...
متن کامل